

FaKopp RootDetector

Maggio 2019

Introduzione

Benvenuto tra gli utilizzatori di RooDetector FaKopp. È questa un'apparecchiatura dedicata alla ricerca delle grandi radici degli alberi tramite indagini non distruttive.

Informazioni sul produttore

ArborElectro è prodotto da:

azienda:	FaKopp Enterprise Bt. In collaborazione con Geoelectro Bt.
Eu tax number:	HU22207573
Indirizzo:	Fenyo 26
Città:	Agfalva
ZIP:	9493
Nazione:	Ungheria
Web:	www.fakopp.com
E-mail:	office@fakopp.com
Telefono:	+3699510996
Distribuito in Italia da:	Micropoli
Indirizzo:	via Magellano 4/6
Città:	Cesano Boscone
CAP:	20090
Provincia:	Milano
Web:	www.micropoli.it
E-mail:	info@micropoli.it
Telefono:	0245862308

Principi di funzionamento

Un segnale sonoro è prodotto al colletto dell'albero. Questo propaga velocemente nel legno lentamente e nel **I**1 terreno. tempo di propagazione dell'onda sonora è misurato tra il sensore di partenza e quello ricevente. La distanza tra i sensori è misurata dall'operatore mentre il tempo è rilevato dagli apparati. La velocità è calcolata dal software. Quando la velocità è

elevata significa che c'è una radice. Il sensore di partenza è posizionato al colletto di un albero a formare col terreno un angolo di circa 45°. Il sensore ricevente è infisso nel terreno e viene spostato attorno all'albero. Il sensore di partenza è percosso da un martello da 100 g in acciaio, questo è il segnale che provoca l'avvio del cronometro, cioè della conta del tempo. Il segnale sonoro viaggia nell'albero e nel terreno, quando raggiunge il sensore ricevente la misura del tempo è fermata ed il valore rilevato è inviato al computer, espresso in μ s (microsecondi, milionesimi di secondo).L'angolo che si forma tra il sensore trasmittente e quello ricevente non dovrebbe superare 90°. L'ideale è mantenerlo entro 60°, perciò si raccomanda di spostare più volte il sensore di partenza attorno all'albero durante il test.

Materiale necessario

Piezosensore di partenza dotato di 6 m di cavo Piezosensore per terreno con involucro in alluminio Amplificatore Unità di controllo "battery box" Martello di gomma Martello in acciaio da 100 gr Software Fune

Approntamento della prova

- 1. Fissare il sensore con testa quadra e cavo lungo al colletto dell'albero. Il puntale occorre sia indirizzato verso le radici con un angolo di 45° circa.
- 2. Collegare l'attacco BNC all'amplificatore (amplificatore 1-2 del tomografo ArborSonic 3 D FaKopp).
- 3. Collegare anche il sensore ricevente per terreno (cilindrico in alluminio) all'amplificatore.
- 4. Collegare "battery box" all'amplificatore tramite l'apposito cavetto.
- 5. Usare una fune come collare attorno all'albero, oppure disegnare un cerchio equidistante dal centro dell'albero attorno al colletto dello stesso. Quale sia il raggio di questo cerchio è indicato dalla linea rossa dello schema. Quando si sposta il sensore nel terreno la distanza tra questo e il centro dell'albero deve rimanere costante.
- 6. La posizione di partenza è bene coincida con il Nord.

Apparati che compongono RootDetector

Configurazione del software

Installazione: copiare i file sul disco fisso.

Bisogna installare .NET 4.0: http://www.microsoft.com/en-us/download/details.aspx?id=17851

Avviato il software, apparirà la seguente finestra:

File Se	ttinas					
COM1 - Open r [m] 2,00 -	< f1> <\f2> <f3 base ang 0</f3 	?&3<\f1> <f2; >F5⊥₁<\f3>< g[deg] N ≑ + 0 ≑</f2; 	>84 (4>V1.1<) step [ci x 15 4	n] angle (c	1294 1152 1126 1194 1102 1104	
r [m] 1,85 * 1,85 *	angle 0 0 10 10 20 30 40 51 61 81 71 91 101 111 111 121 -	v [m/s] 622,48 ▲ 267,53 560,19 606,71 ≡ 540,63 1436,7 992,99 856,57 495,68 507,87 484,47 396,18 1444,9 1246,3 601,77 293,71 ▼	n 12 * 4 = 5 3 3 5 3 2 4 4 3 4 4 3 4 3 4 3 4 3 4 3 5 3 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4	err 45.6% * 84.7% 0.9% 56.6% = 32.9% 47.7% 49.0% 48.7% 1.2% 3.3% 1.5% 11.5% 55.3% 25.1% 56.6% 57.9% ~	_min [m/s] .000 + .000 + .000 +	

- 1. Accendere l'unità di controllo.
- 2. Selezionare la porta COM corretta. In caso di problemi, è possibile ricorrere al manuale del software ArborSonic 3D con il collegamento Bluetooth. Occorre comunque usare la stessa porta da utilizzare con ArborSonic 3D.
- 3. Aprire la porta cliccando il pulsante "Open".
- 4. Le scritte in blu che compaiono nella finestra rappresentano dati in ingresso grezzi. Essi sono da ignorare.
- 5. Percuotere il sensore fissato sul colletto dell'albero con il martello in acciaio di 100 g contenuto nella confezione di ArborSonic 3D.
- 6. I tempi misurati compariranno nella finestra accanto a quella dei dati grezzi.
- 7. Posizionare il raggio nell'apposita configurazione.
- 8. L'angolo iniziale deve avere un valore di 0 gradi.
- 9. La distanza fra le misure dev'essere di 15 cm.
- 10. Dopo 3 percussioni (e 3 tempi convalidati), premere il tasto "Store". Ulteriori percussioni non interferiscono.
- 11. Incrementare il valore N e spostare il sensore in senso orario della distanza data dal valore "Step".
- 12. Percuotere ancora il sensore e ripetere i punti dal 5 all'11 dino a completare la circonferenza dell'albero.
- 13. Alla fine delle misurazioni selezionare "Save" dal menu "File".

I dati compariranno nella finestra in basso a sinistra. A seconda delle velocità misurate, i colori dei cerchietti che rappresentano i punti di misurazione cambieranno di conseguenza. I punti più scuri rappresentano velocità più alte che indicano la presenza di una radice. Il sistema è in grado di rilevare radici 30-40 cm al di sotto della superficie.

Produrre un grafico con Excel tramite un file ".rdm"

RootDetectorConverter è un software che può convertire i file ".rdm" (prodotti da RootDetector FaKopp) in file ".xlsx", cioè file di Microsoft Excel. In pratica è un utensile efficace per produrre grafici d'effetto.

Il software è fornito in formato ".zip", occorre perciò estrarre il contenuto in una cartella dedicata.

Avviare il software tramite "RootDetectorConverter.exe".

Finestra del software "RootDetectorConverter"

Tramite la finestra che si apre è possibile impostare che:

il programma inserisca i dati mancanti,

mostri i dati grezzi dei tempi misurati (non solo le medie dei tempi nella corretta posizione)

aggiunga i dati per completare un cerchio, inserendo delle righe a valore 0 fino a completare 360°.

Sul lato destro della finestra è possibile selezionare i file oppure semplicemente trascinare e rilasciare i file nella finestra con fondo grigio.

La conversione in ".xlsx" file è pressochè immediata, non richiede più di qualche secondo e questi file sono salvati nella stessa cartella dei file originali, elencati i sequenza con gli altri file.

Passo dopo passo procediamo a produrre un grafico radiale tramite Excel.

1.) Nel corso dell'analisi non si deve premere "Store" ogni volta. Lo si preme solo dopo che si è terminato il ciclo di almeno 3 battute in una posizione.
2.) Effettuare le misure in sequenza e se non c'è proprio la necessità non tornare indietro. Salvare i dati al termine delle misure.

3.) Rilasciare il file ".rdm" nel software "RootDetectorCoverter".
4.) Aprire il file ".xlsx" con Excel. Dovrebbero apparire delle colonne quali "radius" (raggio) in metri, "angle" (angoli) in gradi, e "average speed" (velocità media) in metri per secondo.

5.) seleziona i valori di velocità media per un raggio.

	AutoSave 💽 🔿	۱۹۶۰	C - B	• -	Barnes_nyolcad_			
F	ile Home	Insert	Draw	Page Layout	Formulas	Data	Review	
C2 - : ×		: × -	✓ f _x	875.0502383	57324			
	А	в		С	D	E	F	
1	radius (meters)	angle (degrees)	average spe	eed (meters per sec	ond)			
2	0.6	0		875.050	2384			
3	0.6	14		872.693	5274			
4	0.6	29		1074.94	6444			
5	0.6	43		906.456	0085			
6	0.6	57		582.54	6824			
7	0.6	72		1167.89	8306			
8	0.6	86		1008.67	2123			
9	0.6	100		617.811	7158			
10	0.6	115		4655.63	5546			
11	0.6	129		402.398	6326			
12	0.6	143		588.191	4011			
13	0.6	158		628.135	2808			
14	0.6	172		871.379	1317			
15	0.6	186		472.972	7276			
16	0.6	201		521.867	5373			
17	0.6	215		521.190	9341			
18	0.6	229		552.412	9728			
19	0.6	244		1308.17	7763			
20	0.6	258		2583.46	0845			
21	0.6	272		457.468	9007			
22	0.6	286		1595.09	3814			
23	0.6	301		5576.39	5296			
24	0.6	315		3011.19	0268			
25	0.6	329		722.151	5379			
26	0.6	344		574.076	0765			
27	0.9	0		1084.42	2379 🥂			
28	0.9	15		526.299	2882			
29	0.9	31		521.065	2636			
30	0.9	46		740.2	7358			
31	0.9	61		790.914	4688			
32	0.9	76		1005.46	4167			
33	0.9	92		672.9	0501			
	(→ Me	asurements	(+)					

6.) Aprire la sezione "Inserisci", quindi seleziona "Vedi tutti i grafici".

	AutoSave 💽 Off	日 ら・ (⊻ € - =		Bar	nes_nyolcac	l_pucolasve	g_jatek - Excel
F	ile Home	Insert Di	raw Page Layout	Formulas	Data	Review	View	Add-ins Help
Pi	votTable Recomme PivotTab	nded Table	Illustrations Add- ins *	Recommend Charts	ed ⊕ • [<u>□</u> - /∿- <u> </u> - /∿- <u> </u> -	Maps Pive	DtChart 3D
	T-1-1					1 t		- Turn
3	lables	14	872.693	5274	C	.narts		Iours
4	0.6	29	1074.94	6444				See All Charts
5	0.6	43	906.456	0085				
6	0.6	57	582.54	6824				
7	0.6	72	1167.89	8306				
8	0.6	86	1008.67	2123				
9	0.6	100	617.811	7158				
10	0.6	115	4655.63	5546				
11	0.6	129	402.398	6326				
12	0.6	143	588.191	4011				
13	0.6	158	628.135	2808				
14	0.6	172	871.379	1317				
15	0.6	186	472.972	7276				
16	0.6	201	521.867	5373				
17	0.6	215	521.190	9341				
18	0.6	229	552.412	9728				
19	0.6	244	1308.17	7763				
20	0.6	258	2583.46	0845				
21	0.6	272	457.468	9007				
22	0.6	286	1595.09	3814				
23	0.6	301	5576.39	5296				
24	0.6	315	3011.19	0268				
25	0.6	329	722.151	5379				
26	0.6	344	574.076	0765				
27	0.9	0	1084.42	2379				
28	0.9	15	526.299	2882				

7.) Si apre la finestra "tutti i grafici" e selezionare "Radar".

8.) Inserire il grafico radar.

1	А	в	с	D	E	F	G	н	1.1	J	к	L
1	radius (meters)	angle (degrees)	average speed (meters per second)									
2	0.6	0	875.0502384									
3	0.6	14	872.6935274	0				0				
4	0.6	29	1074.946444	Y			c1					
5	0.6	43	906.4560085				Cr	art litle				
6	0.6	57	582.546824		1							0
7	0.6	72	1167.898306		24 24 3							
8	0.6	86	1008.672123		23 5000 4							
9	0.6	100	617.8117158			22	30	00	5			\bigtriangledown
10	0.6	115	4655.635546			21	N	00	6			U
11	0.6	129	402.3986326	Ó		20	1	da la	111.			Ó
12	0.6	143	588.1914011			20		22				
13	0.6	158	628.1352808			19			1			
14	0.6	172	871.3791317			18			9			
15	0.6	186	472.9727276	_		1	7		10			
16	0.6	201	521.8675373	_			16		11			
17	0.6	215	521.1909341				15	14 13	12			
18	0.6	229	552.4129728					0				
19	0.6	244	1308.177763	0				0				Ų į
20	0.6	258	2583.460845									
21	0.6	272	457.4689007									
22	0.6	286	1595.093814									
23	0.6	301	5576.395296									
24	0.6	315	3011.190268									
25	0.6	329	722.1515379									
26	0.6	344	574.0760765									
27	0.9	0	1084.422379									
28	0.9	15	526.2992882									
29	0.9	31	521.0652636									
30	0.9	46	740.27358									

9.) Selezionare l'etichetta di categoria.

10.) Premere con il pulsante destro del mouse e selezionare "Seleziona dati ..."

11.) Premere "Edita".

Select Data Source	?	\times
Chart <u>d</u> ata range: =Measurements!\$C\$2:\$C\$26		<u>+</u>
Switch	Row/Column	
Legend Entries (<u>S</u> eries)	Horizontal (<u>C</u> ategory) Axis Labels	
Add Edit X Remove A	Edit	
Series1	✓ 1 ^{45³}	^
	2	
	3	
	✓ 4	
	5	~
Hidden and Empty Cells	OK Cano	el

12.) Selezionare gli angoli opportuni. (Vedere la figura 08.)

13.)PremiOkeOk,ilgraficoècosìpronto.14.)Ripetere il tutto se occorresse produrre un grafico per un altro raggio.

Manutenzione

Immagazzinare le apparecchiature in un luogo asciutto a temperatura ambiente. Per la pulizia utilizzare un panne leggermente umido.

Nel caso i sensori si imbrattassero di resina è possibile usare un solvente con trementina o alcool 90°. Attenzione a manipolare questi prodotti con tutte le precauzioni che richiedono i prodotti chimici.

In caso di rottura di un apparato contattare il distributore locale FaKopp.

Garanzia

La garanzia è di un anno dal ricevimento della strumentazione.

Nota importante

RootDetector rileva le radici principali e le rileva se esse sono dotate di sufficiente legno per trasportare il segnale sonoro. Questo tipo di analisi non distingue tra radici sane e radici ammalorate e non fornisce alcun dato sulla stabilità dell'apparato radicale o dell'albero e nemmeno sul loro fattore di sicurezza.